Arginine Methylation by PRMT1 Regulates Muscle Stem Cell Fate
نویسندگان
چکیده
Quiescent muscle stem cells (MSCs) become activated in response to skeletal muscle injury to initiate regeneration. Activated MSCs proliferate and differentiate to repair damaged fibers or self-renew to maintain the pool and ensure future regeneration. The balance between self-renewal, proliferation, and differentiation is a tightly regulated process controlled by a genetic cascade involving determinant transcription factors such as Pax7, Myf5, MyoD, and MyoG. Recently, there have been several reports about the role of arginine methylation as a requirement for epigenetically mediated control of muscle regeneration. Here we report that the protein arginine methyltransferase 1 (PRMT1) is expressed in MSCs and that conditional ablation of PRMT1 in MSCs using Pax7CreERT2 causes impairment of muscle regeneration. Importantly, PRMT1-deficient MSCs have enhanced cell proliferation after injury but are unable to terminate the myogenic differentiation program, leading to regeneration failure. We identify the coactivator of Six1, Eya1, as a substrate of PRMT1. We show that PRMT1 methylates Eya1 in vitro and that loss of PRMT1 function in vivo prevents Eya1 methylation. Moreover, we observe that PRMT1-deficient MSCs have reduced expression of Eya1/Six1 target MyoD due to disruption of Eya1 recruitment at the MyoD promoter and subsequent Eya1-mediated coactivation. These findings suggest that arginine methylation by PRMT1 regulates muscle stem cell fate through the Eya1/Six1/MyoD axis.
منابع مشابه
hCAF1, a new regulator of PRMT1-dependent arginine methylation.
Protein arginine methylation is an emergent post-translational modification involved in a growing number of cellular processes, including transcriptional regulation, cell signaling, RNA processing and DNA repair. Although protein arginine methyltransferase 1 (PRMT1) is the major arginine methyltransferase in mammals, little is known about the regulation of its activity, except for the regulatio...
متن کاملArginine methylation regulates telomere length and stability.
TRF2, a component of the shelterin complex, functions to protect telomeres. TRF2 contains an N-terminal basic domain rich in glycines and arginines, similar to the GAR motif that is methylated by protein arginine methyltransferases. However, whether arginine methylation regulates TRF2 function has not been determined. Here we report that amino acid substitutions of arginines with lysines in the...
متن کاملPRMT1 and PRMT8 regulate retinoic acid-dependent neuronal differentiation with implications to neuropathology.
Retinoids are morphogens and have been implicated in cell fate commitment of embryonic stem cells (ESCs) to neurons. Their effects are mediated by RAR and RXR nuclear receptors. However, transcriptional cofactors required for cell and gene-specific retinoid signaling are not known. Here we show that protein arginine methyl transferase (PRMT) 1 and 8 have key roles in determining retinoid regula...
متن کاملRetraction. PRMT1-mediated arginine methylation of PIAS1 regulates STAT1 signaling.
To elucidate the function of the transcriptional coregulator PRMT1 (protein arginine methyltranferase 1) in interferon (IFN) signaling, we investigated the expression of STAT1 (signal transducer and activator of transcription) target genes in PRMT1-depleted cells. We show here that PRMT1 represses a subset of IFNgamma-inducible STAT1 target genes in a methyltransferase-dependent manner. These g...
متن کاملArginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control.
The role of protein arginine methylation in the DNA damage checkpoint response and DNA repair is largely unknown. Herein we show that the MRE11 checkpoint protein is arginine methylated by PRMT1. Mutation of the arginines within MRE11 severely impaired the exonuclease activity of MRE11 but did not influence its ability to form complexes with RAD50 and NBS1. Cells containing hypomethylated MRE11...
متن کامل